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PREFACE

A visible surface algorithm capable of showing on

a raster display smooth, transparent objects without jagged

edges is described. The polygons defining the object to

be displayed are put into visible order, and then output to

the raster frame buffer by a special face drawing and

shading algorithm. Collections of objects can be manually

put into visible order and each group drawn separately; this

allows scenes with more faces than can be held in the program

data structure at any one time. Minimum hardware for

implementation is a raster display with a frame buffer, and

a minicomputer with a disk.
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1. INTRODUCTION

The problem we are concerned with is that of produc-

ing, by computer, realistic shaded renderings of three-

dimensional objects. Such a facility is of great use for

representing mathematical functions, in computer-aided design,

producing architectural renditions, for computer- generated

movies and animation, and in aircraft or traffic simulation.

Many people have worked on this problem [1-8] , and

excellent pictures have resulted. All of these algorithms

use the basic idea of determining shading only at regularly-

spaced sample points, and using the resulting values to

approximate the correct view (see Figure 1). That is,

the surface that is visible at each sampling point is found,

and the appropriate shading value is determined therefrom.

The display output of these algorithms, though, suffer from

sampling error, which causes the straight edge of Figure

2a to appear as in 2b, and object A of Figure 2c to disappear,

even though object B is considered visible.

Our approach to the problem has resulted in an algor-

ithm that can display smooth , transparent objects with

no detectable sampling error.

The objects we use are either comprised of or ap-

proximated by planar polygons; each polygon has photometric



Figure 1. Sampled triangle: circles inside
triangle denote sampling points
used to represent triangle..
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(a) Edge to be sampled (b) Jagged "edge" resulting (c) A disappears

Figure 2. Sampling Error



data associated (transmittivity , reflectivity) and whether

or not it is part of a smooth surface. The polygons are

defined in world coordinates (X , Y , Z ) (Figure 3a); theywww
are then transformed to the eye coordinate system (X , Y , Z )

e ' e ' e

with the eye at the origin and looking down the -Z axis

(Figure 3b). Polygon parts outside the pyramid of vision

(Figure 3c) are removed and the remaining portions transformed

to the projective or screen coordinate system (X , Y , Z )^ J s' s' s

(Figure 3d). All visibility comparisons are done in the

latter coordinates. The sampling grid is located in the

Z =0 plane, and the mapping from screen coordinates to the
s

sample plane is (X , Y , Z )
-* (X , Y , ) (Figure 3e). Due

o o o o o

to the clipping procedure above, X and Y for objects are

in [-1,1]^ The sample coordinate system (X , Y ) is
'

J •
«i^j.« j samp' samp

superimposed in the sample plane as in Figure 3f ; an integer

value for X , say, means that the point lies on one of
samp' * ' ^

the x grid lines. Conversion from real to integer sample

coordinates is handled in the shader. Sample points are

sometimes just called points, picture points, elements, or

"pixels"; a horizontal sample line (Y =n) is called a^ '
* samp

scan line. Shading values for pixels are represented as

non-negative integers measuring intensity; means black

or as dark as possible, and the maximum pixel value

(restricted by the hardware) represents white or maximum

brightness. Color can be represented by a 3-vector of

shading values indicating the intensities of the red, blue,

and green components. The pixel values obtained are stored
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in a raster frame buffer or just a large memory; this can

then be displayed either on a television (raster) display

or a precision CRT. The television raster lines correspond

to the scan lines at the same position. Figure 4 is a

sample shaded rendition.



Figure k. Example of a Shaded Rendition



2. PREVIOUS WORK

The display algorithm we have designed breaks into

five parts, with the following flow of control:

(Start)

Polygon Clipper -* Special Sorter -» Face Drawer + Segment Shader

\ \ //
Face Splitting (Display)

The basic idea of ordering faces and using the frame

buffer to delete hidden parts was first considered in a sim-

plified manner suitable for hardware implementation by Schu-

macker [8l; Newell [1 ] later independently augmented the idea

to a method that works in general. Our special sorter works

in the same way as Newell' s, but we have modified their non-

deterministic strategy to a deterministic one to aid our

justification and (informal) proof of it. The method we use

to sample and draw faces is a slightly altered and corrected

version of the one embedded in Watkin's visible surface al-

gorithm [6], The segment shader uses the same method to do

smooth shading as found in Gourad [ 2 1, and to display trans-

parent faces as found in Newell.

New methods described here are a shading algorithm

that removes jagged edges and compensates for faces disap-

pearing due to sampling error, and a face splitting algorithm
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that can also be used for polygon clipping. Since they do not

use any special property of the Newell special sorter, these

algorithms may be easily adapted for use with implementations

of Watkin's or any other similar visible surface display

method.

In this thesis, we will start out first describing

the special sorter so as to get an initial grasp on the vis-

ible surface problem. The face splitter required by the

special sorter and the polygon clipper will then be discussed

simultaneously, since they are closely connected. The face

drawing routine is then described, both for completeness and

also because it is affected by the shader. The special shader

is the last algorithm to be covered because we must then con-

sider the entire effect of the program up to that point for

a proper understanding of its processing.



3. VISIBLE SURFACE DETERMINATION

The display problem can be divided into two steps:

at each sample point, we must find out which face of those

input is visible. Then, we must compute the correct shad-

ing value for the face at that sample point.

Our approach to visibility determination is suggest-

ed by the following experiment. Figure 5a shows the (line

drawing) projection of two opaque squares, with the hidden

part dashed. The picture can be considered to show a pre-

cedence relation between squares A and B, where A<B because

B occults part of A ( and A does not occult any part of B)

.

The significance of this precedence is shown in Figures

5b-c. Since B>A, we sample and shade (draw, henceforth)

A and put the result into the frame buffer first. Then we

draw B, overwriting whatever was already in the frame buffer.

The view now in the buffer is precisely the desired sampling

of the visible portions of the scene in Figure 5a! This

means that visibility determination for a number of faces

can be done by finding a partial ordering under the above

precedence relation, and drawing them out, one by one.

For two faces A and B, the possible relations are

exhausted by:

1. A<B B occults A, A does not occult B.

2. B<A A occults B, B does not occult A.
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(a) Face A hidden by face B

(b) Face A dra-wn

(c) Face B dra-wn, overwriting
face A

Figure 5« Visible Parts Determination
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3. A=B A does not occult B, B does not occult A.

4. A?B A occults B, B occults A (cycle of length 2)

To determine the relationship of two faces, then,

we need an algorithm that will answer the question: does

A occult B? It turns out that it is much easier, and just

as useful, to answer the question: does A not occult B?

We may do this by applying a series of tests, the success

of any implying that A<B (A=B or A<B) . If any test fails,

the next one is attempted. If they all fail, it is then

known that either A>B or A?B. In this case, A and B can

then be swapped, and the tests applied again to determine

which is the case.

The tests described below are carried out in the

screen coordinate system, and attempt to determine as

rapidly as possible if A does not occult B.

Test 1. Maximum and minimum Xs and Y
g
values of A and B

do not overlap (Figure 6a) .

Test 2. Minimum Z s coordinate of A < maximum Z s coordinate

of B (Increasing Z is away from observer) (Figure

6b) .

Test 3. No part of A is contained in the front half-space

of B, or no part of B is contained in the back

half-space of A (the plane of a face divides space

into two open half-spaces and the plane of the

face. The observer is contained in the front half-

space) (Figure 6c)

.

Test 4. (Every pair of edges E, in A and E„ in B may have

to be examined) We look for a pair such that if



*x. *s
f

12

- X 5

(a) Extreme values do not

overlap

(b) A is not in front of B

r5

-z< -Z,

(c) B in front half space
of A

(d) B occults A

Figure 6. Comparison Tests for Precedence Determination
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the projections of EA and Eg intersect in exactly

one point (in the Z =0 plane) , then ED is in front

of EA (Z
B <ZA in Figure 6d)

.

If the scene permits it, the relation < may be con-

sistent and a partial ordering of the faces can then be

determined by any (efficient) sorting algorithm. In fact,

if the objects in the scene are separated enough, either

Test 1 or Test 2 will always succeed; by either manually or

automatically sorting their extents according to that rule,

we can display several large objects, even though there is

only enough computer memory to store the complete descrip-

tion of one such object at a time.

There is no such partial ordering only if there is

a cycle of precedence: A>B>. . .>A. Cycles of length 2

are detectable when A?B, as in Figures 7a-b. A longer

cycle is shown in Figure 7c. In all of these examples, we

can cut the cycle and restore the existence of a partial

ordering by splitting a face on the indicated dashed line.

A special sorting method which detects such cycles and

breaks them is needed.

The basic idea used in the special sorter for cycle

detection is to observe that there are no "minimum" faces

in a cycle, faces with no other faces preceding them.

Thus, we can detect cycles by searching for such a minimum

face; failure indicates the presence of a cycle. It is

clear now how the special sorter should work: a face P is

selected as a possible minimum face candidate and compared
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(a) Length 2

(b) Length 2

(c) Length it-

Figure 7« Cycles
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with all other faces Q. If there is a face Q such that

Q<P, Q becomes the new candidate—unless it had already

been one. This can be determined if Q was marked when it

was knocked out previously. The flow chart of Figure 8

illustrates this process as used in the special sorter

(the parts in parentheses are comments)

.

The only problem remaining is determining the correct

face to split. For length 2 cycles, the solution is to

split one of the faces with the plane of the other face, as

in Figures 7a-b. The proof of this is that it is now ob-

vious that the pieces will pass Test 3, at most. For

longer cycles, a special method has to be used. For example,

in Figure 9, face P must be the one to be split, but suppose

we discover the cycle when we compare Q and R; how then do

we find P?

The approach we use is as follows. Let the cycle

found be (1) P>Q>R>. . .>P. All of the relations are >

because the tests that were satisfied were: P occults Q,

and Q does not occult P. Both P and Q are available because

the cycle was detected when it was found that P>Q. The

splitting process splits face Q into two sets of faces Q.

and Q 2
for which we have P< every face in Q, and P> every

face in Q 2
. Let us do that by projecting P onto Q and

cutting Q at the projected edges of P (Figure 9) . Note

that the Q~ portion is completely occulted by P. We

clearly have here what is desired: P<Q, since P, does not

occult Q
1

, and P>Q_ since it does.
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(Start)

P=HEAD (of list of faces
remaining to be output)

no more

Does P occult Q?

Does Q occult P?

N Y

Q marked?
N

Mark P. Move Q to
head of list.

-> Draw P into frame buffer

HEAD=NEXT(P)-

no more
v

(Return)

Split Q into Q-, and Q2 by
plane of P.(P/-Q2 , P^Qi).

"?- Put Q]_ where Q was in list

and move Q2 to head of list.

Split face

(Handle pieces same way)

by edge of P
no such
edge

Figure 8. Special Sorter Flow Chart
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Splitting Q results in
P < Q_, thus breaking the

large cycle P > Q,

> R > S > P. However, P
can still not be drawn
unless it is split

here.

Figure 9. Multiple Cycles
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Let us examine what happens to the cycle for the two

parts of Q. Since Q>R, Q-,>R, and (1) becomes (1)' P<Q>R>. . .>P

which is no longer a cycle. With Q„ , there are two possi-

bilities: Q
?
<R or Qp>R. The first case results in breaking

the cycle as in (1)'; to handle the second, we must have ar-

ranged the special sorter so that the current cycle is the

smallest cycle containing P. Assuming that has been done,

we can see that Q«>R cannot occur. Since Q~ is wholly con-

tained in P (in projection) , Q_>R implies that either P>R,

P<R, or P?R. In every case, smaller cycles containing P

occur, the last being of length 2.

The method used in the special sorter to detect

cycles in order of size is simply to look at an ordered

list of marked faces first before looking at any unmarked

ones. The marked faces are already in visible order:

T<S<R<Q..., and the current minimum candidate is compared

by examining the sequence, left to right. This method works,

as can be proved by induction.

The fundamental stage in breaking long cycles is the

projection of face P onto Q; actually, we very much want to

avoid doing this explicitly because that type of work is

meant to be done implicity in the drawing process. However,

projecting just one edge of P onto Q can be done by the

face splitting routine we already have; we just have to find

an edge of P that intersects an edge of Q (as in Test 4.

We use that routine, in fact) and use the plane of that

edge to split Q (Figure 10) . We then hope that that splitting
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-Z,

FUTURE SPLITS Q

IF NEEDED

CURRENT SPLIT

Figure 10. Projection of Edge Plane
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was sufficient to break the cycle. That is a reasonable hope

in general because most scenes have few cycles which are

widely separated. If that splitting failed, another edge of

P will be used (since the old one will no longer intersect Q

in just one point) , and we can see that, if needed, all edges

of P will eventually be projected and Q will be divided cor-

rectly, and the proof above applies.

There is just one difficulty that may occur. If no

edge of P intersects any edge of Q, there are three

possibilities

:

A. The projection of P is wholly contained in that

of Q. In this case, we can use any edge of P to

form the cutting plane. We always assume this is

the case.

B. The projection of Q is wholly contained in that

of P. But this is impossible, for Q would then be

Q
2 , and Q>R would lean Q ?

>R, which we showed could

not occur.

C. P and Q overlap at edges or vertices only.

This is detectable when case A is assumed above,

and the face splitter finds nothing to split. If

all pairs of edges have been tried, P and Q do not

really overlap, and we reverse the decision of

test 4. Otherwise, we must try another pair of

edges.



21

As an interjection, it is interesting to note that

the comparison routine described above can be effectively

used when manually drawing line drawings of three dimensional

scenes. In Figure 11, one wants to draw the 3D block letter

E. Because of the face ordering, one knows that P can

be drawn first. The rest of the faces are easily taken care

of, as in the sequence. In fact, this method is not re-

stricted to manual means; a special drawing routine can be

used to produce a line drawing (on a plotter) of each face.

This routine keeps track of the current "visible perimeter,"

and when a face is given to it to be drawn, only the part

outside the visible perimeter is plotted, and the perimeter

is then updated. The major effort of the routine is spent

on determining whether or not the face is inside.
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Figure 11. A Manual Algorithm for Drawing
3D Objects
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4. FACE SPLITTING

The special sorter requires an algorithm for splitting

faces. Furthermore, in the transformation from world to

screen coordinates, polygons and polygon portions that lie out-

side the viewing pyramid (Figure 3c) must be removed (or

"clipped") from consideration, because these parts are not

going to be visible. An efficient edge clipping routine al-

ready exists [9], but it cannot be directly applied to polygons,

As in Figure 12a, all of the edges of the face will be reject-

ed as being outside, but since the face surrounds the viewing

pyramid, it is certainly potentially visible. Edges must then

be generated for the clipped face, as in the dashed part of

the figure. Our approach to face or polygon clipping is to

use the face splitting algorithm to split faces with the planes

that define the sides of the viewing pyramid. For example,

the face of Figure 12a can be split with the planes Y=±Z, re-

sulting in 2 edges being generated and the polygon of Figure

12b. (Each edge can simultaneously be compared with both

planes, so we can do it in one pass.) Finally, the resulting

face(s) are split using the planes X=±Z, and it is seen that

the desired result is necessarily obtained (Figure 12c) (Of

course, we throw away the parts outside).

The point of that discussion was to show that the

face splitting algorithm can be used either by the special
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Y=Z PLANE

(a) All edges outside
(no edges clipped)

Y = -Z PLANE-

(b) 2 pass polygon clipping: pass 1

X=Z PLANE

(c) pass 2

Figure 12. Polygon Clipping
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sorter or the polygon clipper. Since polygon clipping is

a necessary adjunct for any three-dimensional visible surface

display system that can show close up views, the algorithm we

describe can be used elsewhere, in such a system.

The method is given a polygon and a cutting plane,

and divides the polygon into parts, also polygons, that lie

to either side of the cutting plane. The polygon is assumed

to be planar, so that the intersection points of its edges

with the cutting plane lie on a line. It will work on twisted

polygons if that assumption remains true. The structure of

the splitting algorithm is affected by the data structure used

to represent polygons. We have found that representing each

polygon as a ring of edges is sufficient for our purposes.

The edges are arranged in the ring so that the "head" vertex

of one edge is the "tail" vertex of the next edge in the ring,

and the polygon node has a pointer to some edge on the ring.

Figure 13 shows a polygon and its representation in the terms

described above. The requirement is then that the face splitter

return the face fragments resulting as a list of polygon

nodes with their associated edge rings and vertex nodes.

It becomes clear how the splitting algorithm should

work. First, all of the edges on the splitted face must be

examined. Now, there are four possible ways the endpoints

of these edges can be related to the cutting plane: both

may be in the same halfspace, both may lie in the cutting

plane, exactly one may lie in the cutting plane, or they may

be in different halfspaces. The contrived polygon of
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Figure 13 . Polygon Data Structure
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Figure 14a shows all four types; the edges have been labelled

with letters A, B, C, or D, respectively, corresponding to

these four ways. Ignoring type B edges for the moment, and

after splitting each type D edge into two type C edges, it

is clear that the algorithm need deal only with type C edges.

At this point, then, we have just an unordered list of type C

edges; if we can structure this list into a representation

of Figure 14b, we will be nearly done, because that structure

has all the information needed to complete the splitting

process. Deferring the justification, observation shows

that the conversion from unordered list can be done in two

steps : (parenthetical comments refer to Figure 14b):

1. Generate two lists of edges (the "left" and "right"

lists); each list contains edges all in the same

half plane (so the left list contains edges 1, 3,

6 and 7, and the right list edges 4, 5, 8, 9, 10,

and 11).

2. Sort the edges of each list with respect to the

position of their endpoint on the line of inter-

section. Then, if A comes after B and B comes

after C on the sorted list, the endpoint of

edge B lies between those of A and C on the

line of intersection (sorted left list becomes

1, 7, 6, 3 in order, and right list 11, 10, 9,

8, 5, 4).



(a) "Typical" face being split

»-r

<-l

i

?

(b) Desired structuring

r 8

* < i

(c) Structuring errors

1 A

(d) Cannot occur

outside inside V
A

S

former type
B edge

outside outside

7V7
x.

inside

(e) Detail

Figure Ik. Face Splitting
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The splitting process can now be completed as follows:

3. For the right, say, then left lists, we take

consecutive pairs of edges and join them with

a generated edge. (Thus, 11-10, 9-8, 5-4, 1-7,

and 6-3 are edges that will be joined with new

edges, which are dashed.)

4. After all pairs have been joined, we observe

that we now have 2 or more rings of edges, each

with at least one generated edge on it. We have

kept the generated edges from step 3 on a list,

and we now pick up each edge on it and mark all

edges in the ring containing it. We continue to

do this for each unmarked edge remaining in the

list of generated edges. For each ring found in

that process, we generate a polygon node pointing

to it and append that node to the output list of

polygons. (Thus, the rings found will be

1 2 3-6 7-1, 4 5-4, 8 9-8, and 10 11-10.)

Step 3 is clearly the crucial step becauee it is not

obvious that the obtained edge pair can be joined. Edges A

and B in Figure 14c cannot be joined by an edge and made

part of a ring, since either edge A or B would point back at

the joining edge. We will show that if the polygon being

split is planar, closed, and non-self-intersecting, the scenario

of Figure 14c or any similar contretemps cannot occur.

Given such a polygon, the intersection points of it

with the cutting plane lie on a line; the property we wish
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to prove is the alternation property, as illustrated in

Figure 14d. Travelling along the line of intersection from

A to B, the polygon edges encountered on both the left and

right side alternate in the direction they point: the

endpoints lying on the line of intersection alternate as the

head, tail, head, tail, ... (or tail, head, tail, head, ...)

vertex of the edge. That this must be so can be shown

figuratively: there is a one armed man at C in the figure,

and he walks around the polygon in the same direction always,

so that his right arm points inside the polygon. Since it

is closed and non-self-intersecting, this is always possible.

Consider then a detail of the line of intersection, shown in

Figure 14e. The line can be divided into segments, which are

alternately inside and outside the polygon, by Jordan's theorem

from topology. If the segments are as described in the figure,

the man will cross at edge A in the direction of the arrow,

with his right arm pointing to the inside segment. Therefore,

edge B, the very next edge, must cross the line of inter-

section in the opposite direction; otherwise, the man's right

arm, when crossing at that point, would point outside. The

same can be verified for edges C and D. Thus, the direction

always alternates as desired. Finally, since the extreme

ends of the line of intersection are necessarily outside,

there will always be an even number of type C edges inter-

secting, by Jordan's theorem again. Since there are an even-

number of crossings (edges A, B, and D in Figure 13e), and

each edge of type C counts as two intersections, both the left
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(top) list and the right (bottom) list contain even number of

edges. Therefore, step 3 in the algorithm will never have

difficulties, and the algorithm is correct.

There is one problem resulting from the implementation

of the algorithm, and it concerns step 2, the sorting step.

Rather than sort along the line, it is much faster to sort

along the projection of the line; for example, in Figure 13a,

it is obvious that sorting along the X axis, i.e., sorting

just by the X coordinate of the intersection, is equivalent

to sorting along the line. If the line of intersection

happens to be parallel to the Z axis, for example, we cannot

sort by X any more, but then we can use the Z coordinate

instead. Sorting by this method, then, edges 9 and 10 of

Figure 13b, since they have the same endpoint on the line and

are both in the right list, are not necessarily sorted in correct

order; the ordering 11, 9, 10, 8, 5, 4 may occur. Since the

algorithm is known to work, we can handle this case by watching

for failure in the joining; linking edges 11 and 9 will fail, and

this must mean that edge 9 and the next edge 10, are in the

wrong order. They can then be switched in the ordered list,

and the joining continued.

One last remark should be made. Polygons that lie

completely in the cutting plane will disappear with this

algorithm; however, this does not cause any change of the

display, because such a situation can only occur if the

polygon is edge-on to the eye, and thus invisible anyway.
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5. FACE SAMPLING

Every time a minimum face is found by the special

sorter, the visible surface determination algorithm requires

that the locations of the sample points representing that

face be found (recall Figure 5), and the raster frame buffer

then overwritten at these points with the intensity value of

the corresponding points on the face.

Sample determination is not affected by the shading

method used, so we discuss the shading algorithm separately,

in the next chapter.

Our approach to determining the sampling of a face

can be understood by observing a much simpler case. In

Figure 15a, line segment A lies on a scan line (Y =integer).

Clearly, the sample points on that line are the points where

its X coordinates are integers. The sampling problem

for line segment A is thus trivial. If another similar line

segment parallel to the X axis, but not not with an^ samp '

integral Y value exists (line B) , it is just as obvious
samp '

that no sample points occur on that line. We can then reduce

the sampling problem to determining the intersection of the

Y scan lines, say, with the face being sampled. The resulting

"segment" representation of the face is shown in Figure 15b.

If the scan lines are examined consecutively, the necessary

problem of determination of segment endpoints can be simplified

These desired endpoints clearly lie on edges of the face; thus



M

B

A

-*•*
SAM*

'a) Simple sampling problem

33

YMAX

*y_ a
x.V

J-

or \

oV/OX \

(b ) Segment representation

TV2 •

>
•

T i

r-i . ,
>

•

A

8

(c) Segmentation errors

(2)

7
(4)

d) Possible edge configurations

when vertices lie on scan lines

TOP

BOTTOM

VM\ON

(e) Segment union operation

T

(f) Sampling convention

Figure 15 . The Sampling Problem



34

the x 's of the intercepts of a particular edge are
samp F

necessarily linearly related. As in the figure, the left

endpoint of the segment at line Y is X
Q ; since DY is 1, X, is

then related to X~ by X, = X~ + DX and we must have (1) X =
u l u n

X
1
+DX(n=l, 2, ...).

n-1 ' '

Now if no vertices of the face lie on any scan line,

we know there will always be an even number of edge inter-

section points on every scan line, because the extreme points

of the line are necessarily outside the face. Thus, we can

sort the points of intersection along the scan line, and use

consecutive endpoints as marking the desired segments. This

idea is also used in the face splitter, where the sorting is

done along the line of intersection of the face and the cutting

plane. Thus, a working sampling algorithm would do the

following things consecutively for each scan line:

Update, using (1), the position of the X

intercepts.

Remove from consideration edges no longer inter-

secting. (In Figure 15b, edge A does not inter-

sect scan line Y and thus must be deleted when

going from line Y-l to Y.

)

Compute the X
n
values for edges being considered

for the first time. (Edge B in the figure appears

initially at line Y.

)

Sort the X intersects,samp

Output each consecutive pair of endpoints as

segments (the shading algorithm is called to

shade the segment).
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Only one problem remains. In Figure 15c, some vertices

of the face this time lie on scan lines; the circles mark the

segments found by the above method. On line T, the segment

is clearly too small, and no segment at all appears on line

T+2, even though one should. The cause of this difficulty is

that a vertex lying on a scan line can either represent one

or two intersections, depending upon the configuration of

the edges coming from it. Four possibilities are represented

in Figure 15d; only for case 1 is the algorithm correct. The

vertex in case 2 and the horizontal portions in cases 3 and 4

are not always output.

One method for handling this problem requires two

"passes" for each scan line with a vertex on it. Its motivation

derives from the fact that the problem above can always be

made to disappear by perturbing the scan line (very) slightly

upward or downward, keeping it parallel to the X„ axis.r i c -a c samp

If the segments found differ, their union is used as the

actual segmentation of that scan line (Figure 15e). As in

Figure 15c, the segmentation of the perturbed scan lines A

and B differ (parts between X's); their union is identical

to the segmentation on B, which is clearly the correct one.

In line T+2 of the same figure, there will be no segments on

one perturbed scan line, but the other, and thus the union,

will be as desired. The proof of this method is to note

that, on the scan line concerned, a point is in a segment

iff it is in one on either the top or bottom perturbed line;

thus, iff it is in their union. Implementation of this



36

method requires a segment buffer, where information on

segments generated for the current scan line is accumulated.

This can be done by adding another step to the sampling

algorithm. Before deleting exiting edges (in the second

step) , a check can be made to see if any of these edges had

an endpoint exactly on the current scan line. If so, then

segments are output as in the fourth and fifth steps before

these edges are deleted. The normal output step in step 5

now can just overwrite this segment buffer to gain the desired

union. It can be seen that our face-splitting algorithm

uses the same idea when it uses the "left" and "right" lists

separately to determine what edges (i.e., segments) to

generate for the face.

Further reflection on this problem results in the fact

that the error it causes is at most one scan line wide

(e.g., line T+2 in Figure 15c). If the special shading

algorithm is used, each output scan line is actually the

average of N scan lines (N=4, usually) covering the same

space in greater detail, and the effect of the missing line

or line part is reduced by this factor. Furthermore, in

a case like that of Figure 15f, where two faces are shown,

scan line T should actually have an intensity which is the

average of face A and face B's. The result of the error

above is that the line has just A's intensity. Thus, what

we really have here is a convention, expressed by saying that

the last scan line an edge appears on is YIAST = r YMAX - l
n

(
r 1 represents the ceiling function, and YMAX is the maximum
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Y value of the edge). So, if YMAX is not an integer, say,samp ' ^ ' * '

12.37, YLAST is r 11.37 1 = 12, as desired. If it is, say,

12.00, then YIAST is r 11.00' 1 = 11. The same type of convention

is applied in the shader to the left edge of segments. More

information on that is found in the next chapter.

Using that convention, then, we can "ignore" the

problem and maintain the simplicity of the face sampler.

It is of interest here to discuss briefly two techniques

for speeding up the face sampler. First, the edges of the

face can be stored in a list which is initially sorted by the

minimum Y value of the edges; this allows us to immediatelysamp ^ '
2

determine for each scan line whether or not a new edge appears.

Since there are few edges in general on a face, a merge

insertion sort is acceptably fast for creating this list.

Note that this technique can also be applied to the list of

faces used in the special sorter; we can have sorted that list

initially by the maximum Z coordinate of the face. Thus, we

can stop comparing the current minimum face P it it is found

that minimum Z coordinate of P < maximum Z coordinate of the
s s

next face Q on the list of faces; since all further faces have

maximum Z
_ ;

that of Q, we know that P cannot occult any of

these faces (recall test 2) and that then it must actually be

the desired minimum face.

The second technique seems applicable only in the face

sampler of all of our algorithms ; we discuss it nevertheless in

case we are wrong. In the sampling algorithm, the current

scan line intercepts are sorted every time; actually, this
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is not necessary because the relative position of an edge

intercept with respect to the others does not change. (If

they did, it would mean that a pair of edges intersected not

at a vertex, which cannot happen in a projection of a planar

polygon—unless it is edge-on. But in that case, it is not

visible anyway and we need not consider it at all.) Thus, we

can maintain an X-sorted list of edge intercepts; when new

edges are found, we need only merge them into that list.
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6. SEGMENT SHADING

The face sampling algorithm determines the segments

of the current scan line that lie on the face; it now becomes

the shader's task to take these segments and for every sample

point on them determine the intensity value to use to

represent that portion of the face. For an exact intensity

rendition, it is clear that we would have to consider the

texture, transmittivity , translucency , the scattering,

specular, and internal components of reflection of the

object, light reflected and shadows caused by other objects,

position, size, and spectra of light sources and position

of the eye. Rather than attempt such a precision, we concern

ourselves only with producing an acceptable rendition by

choosing just one or two of these intensity effects to

model in the shader. Figure 4, for example, was shaded using

only a scattered shading model. Furthermore, intensity is

also affected by sampling error correction; as in Figure 2c,

the intensities of the neighboring sample points of A must

be modified to indicate A's presence. In this chapter, then,

we will discuss only the scattering, specular, and transparency

models. Once the appropriate shade is obtained, we show how

to use these values to reduce the effect of sampling error.

For the shading models, only one white light source is

considered, and it emanates parallel rays of light. If this

light source is placed at the eye, it is clear that no
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shadows can be seen (if all surfaces are opaque). Historically,

then, this was done to avoid the computation of shadows.

Newell [ 11 seems to have been the first to discover that a

shadow-like effect results from the scattering model if the

light source is somewhat displaced from the eye, resulting

in much more interesting displays for certain classes of

objects. The other previous efforts in visible surface

display [2-8] also have slightly differing shading rationales.

As they have done, we compute the intensity of a face

just at one point, say, its centroid, and use this value

over the entire face. The shading models that are global in

this way are the scattering and specular reflection off the

face; transparency must be handled on a local basis because

it depends on what faces are in back of the current one. We

do not cover any other models.

Scattering reflection is embodied in the following

intensity rule:

(1) I = I
Q

cos
a

Q

where d is the angle between the face normal and the parallel

rays of light. a is a small value, 1 say, and models the

scattering component. This component and its near independence

of the eye position can be demonstrated by a simple experiment.

Take a pad of white scratch paper and extinguish all room

lights except the fluorescent desk light. By rotating the

pad of paper around an axis parallel to that of the lamp,

and by moving the head, an intensity variation similar to
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I cos 9 is observed. I~ is proportional to the intensity

of the light source and the reflectance of the face.

Specular reflection models the mirror-like qualities of

the face; it is non-existent for paper, but appears in shiny

or metallic surfaces. It is not independent of the eye

position, since we are actually seeing the reflection of

the light source. It can be modelled by

(2) I = I
1

cos
b (9-0

1
)

where y. is the (absolute value of) the angle between the

face normal and the face centroid to eye vector. b here is

a high value, 5-20, because reflections only appear at very

narrow critical angles. I is again proportional to the

reflectance and the source illuminance. If the surface is

ground metal, for example, both scattering and specular

components will appear, and the sum of (1) and (2) can then

be used to model its intensity. Figure 16 shows a face and

all of the angles used in the above two computations.

Finally, the face transparency is computed at every

sample point by comparing the intensity given by (1) and (2)

above (I ) with the intensity at that point already in the
3.

frame buffer (I
fa
). The output intensity I is

(3) I = I if I > I,
a a b

I = (l-w)I + wl, otherwise
a b

where w is proportional to the transmittivity of the face.

Thus, w = means that the face is opaque, whereas w = 1
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means that it is completely transparent. The first part of

(3) is used because physical observations show that it is

hard to see through brightly-reflecting glass!

The shader can also be modified slightly to use

Gourad's smooth shading technique [2], especially for

displaying curved surfaces. These curved surfaces are still

approximated by polygons , but the shading is so computed

that there are no discontinuities in its value. Thus,

"joints" between polygons that appear because of differing

intensities are made to disappear. The shading method used

is a double linear interpolation. First, normals to the

surface at vertices are computed; usually, the average

normal of the faces surrounding that vertex is used to

approximate that value. An exact value for the normal is

available, for example, when using Bezier or Coons- type

surface representations. Then, the intensity of that vertex

is calculated using just the scattering and specular models.

Now, when a face is drawn out, the intensity of its edges

is taken to be a linear interpolation of the intensities

of their endpoints. As in Figure 16, the intensity of

point A is effectively t • intensity at V + (1-t ). intensity

at V_, and similarly for B. The segment AB thus has intensity

values for its endpoints, and the same type of interpolation

is performed for every sample point along that segment (note

that both interpolations can be done incrementally). It

can be seen then that the major effect of that rule is to

maintain continuity of intensity across the edges of faces.
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The values obtained are finally modified by the transparency

model as in (3) above. It should be noted that effective

smooth shading requires enough intensity levels to avoid any

kind of "contouring" effect, where a jump of one intensity

level becomes immediately apparent. However, a sufficient

number of intensity levels can always be simulated using

averaging or pseudo- random coding [10] ; for example, if an

intensity of 10.75 were desired, we could output 10 1/4 of

the time and 11 3/4 of the time, so that the average intensity

output is 10.75. Use of a fast pseudo-random number generator

to select the proper intensity level is preferable. If,

Gourad's method is used, then the face splitting routine,

when it splits type D edges, should compute a correct

intensity value for the vertex it creates.

We are now ready to discuss the actual details of the

shading algorithm. It should be clear now that the basic

sequence of action is:

• Read scan line and do other initialization.

• From left sample point to right sample point:

compute either a constant or linearly-varying

intensity value; apply transparency model; use

pseudo-random coding to convert to an integral

intensity value; and output the new pixel values.

• Write back scan line to raster frame buffer.

The (purposely) detailed flow chart of Figure 17 performs

these functions. The significance of N will be covered later;

assume N = 1 for the moment. The array g_ is a buffer
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(Start)

XL= 'XLEFT^

XR= 'XRIGHT-l'

(initially, g is all -O's, YEUP is -1)

I
XL>XR?

In y

YBUF= LY/Nj ?
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> (Return)

->YBUF=-1?
N

e
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Z
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N Y
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>
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1
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( gx (I/N)(+SH
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I
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I
Set A=MOD(XL,N). Set g± (XL/N)=gi (XL/N)+A*g (XL/N)
Set A=MOD(XR,N). Set g1 (XR/N)=g-> (XR/N)+A*g (XR/N)

(Return)

Figure 17. Special Shader Flow Chart
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containing the pixel values of the scan line located at YBUF;

when a new line is needed, g~ is written out, and the new

line read into gn and YBUF updated. The array g^ is used to

buffer the new pixel values; before g~ is written out, the

parts of g, that changed are copied to g„. The smooth shading

technique is implemented incrementally by SH = SH+DSH, where

SH is the intensity or shade to use. XLEFT and XRIGHT are

the exact segment endpoints on the current scan line at Y;

SHL and SHR are the intensities at the endpoints. If a

constant intensity is desired, the shade of the entire face F

can be used. XL and XR are the (integral) leftmost and

rightmost sample points on the current segment. Note that

we use XR = rXRIGHT-l"1 instead of the expected XR = LXRIGHTj ;

this represents the use of the same convention mentioned when

discussing the face sampler.

It is time to discuss our method for reducing sampling

error. It should be clear now that we can reduce that error

by increasing the number of samples; i.e., increasing the

"resolution." But we cannot forever increase the resolution

because of the finite size of the frame buffer. When maximum

resolution is reached, we must look to other means of reducing

sampling error.

2Let the maximum sample grid size be K . Our special

shading algorithm requires that samples be computed as if for

2
a (NK) grid; then this information is transformed (reduced)

2so that it fits into K samples. The simplest such transforma-

2tion that is of any use is to effectively divide the (NK)
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2
grid into K NxN blocks. Then, the average intensity value

of each block is computed and output as one of the correspond-

2ing K sample points. Clearly, more information is contained

2 2
in this new K grid as opposed to using just K samples; as

in Figure 18b, we have now become aware of figures that

formerly lay between scan lines , and something has certainly

happened to the jagged edges. Since the averaging transforma-

tion above is essentially a "blurring" transformation or a

"low-pass filter," it is clear that at worst the sharply-

defined jagged edges have become less-obvious blurred jagged

edges. Other reduction transformations that lose less

information may exist, and it should be an interesting task

to find them.

Modifications to the basic shading algorithm above

required to implement the averaging are described now.

2Segments are found in the (NK) grid, and the g, array is

2used to accumulate the intensity values . When each K scan

line is complete, after N steps, the elements in g are

2divided by N and then output. Figure 17 is also the flow

chart of the special shading algorithm; the N referred to in

it is the N we have been using. Figure 18a shows the exact

2position of the N block; sample point A is set to the sum

2
of the pixel values at the circled spots divided by N .

2
Thus, the transformation from scan line I in the (NK) grid

2
to the corresponding N line is L I/Nj , or just the quotient

of I/N (integer divide).
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Note that the speed of the shading algorithm using the

averaging transformation is proportional to N; the face

sampler also has N times more scan lines to process, so the

2total effort is slowed down by a factor of N . Actually,

though, that can be cut to only N times slower by doing

special-case handling of the inner loop in the shader ; for

long segments, we can effectively do the sampling of the

inner part N samples at a time. Since the segment on the

inside spans the block, we can compute what is to be added;

we have the sum as

SH + SH+DSH + ... + SH+(N-1)«DSH = N«SH +
N(N

2

" 1)
«DSH

directly. Thus, for large faces, the shader will not run

significantly slower. Other transformations may be

implementable even more rapidly.

Actually, the above shading algorithm is preferably

used with a Watkins-type visible surface algorithm that

knows exactly what is visible at each sampling point. Since

each face is written out separately by the special sorter,

some information is necessarily lost. As in Figure 18c,

the two cases shown are indistinguishable if the faces arc

written out separately, even though the further face in the

left case should not be visible at all. Surtherland has

proposed a new visible surface algorithm [11] that combines

the best features of the Newell and Watkins approaches; in

particular, the algorithm can supply an ordered list of
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segments so that transparency calculations are feasible,

and also exactly what segment is visible at each sample point,

to avoid the problem of Figure 18c.
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7. CONCLUSIONS

We have described a series of algorithms that together

implement a system for visible surface display. Solutions

to the polygon clipping and sampling error problems have been

demonstrated, which are also usable with other visible surface

algorithms. The Newell special sorter has been closely

examined and shown to always work. The visible surface system

has been partially implemented on a PDP 8e minicomputer, as

described in the Appendix.
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APPENDIX

Figures 4 and 19 were generated with a preliminary

version of the visible surface algorithm. Figure 20 is a

description of the available hardware in the Illiac III

system, part of which we used. The raster frame buffer was

stored in one of the Fabritek core modules; its 128K bytes

is sufficient to hold a 256 x 512 picture. The other module

was used as a very high speed "disk" (750 nsec access time

for 80 bits), and contained the PDP 8e operating system

along with a "virtual memory" file specifying object description

and manipulation data. The raster frame buffer is displayed

on the monitor; the frame rate is about 1/2 second, but the

slow-decay phosphor allows non-photographic observation of

the rendering.
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Figure 19. Figure k Rotated and Clipped
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